Weighted similarity-based clustering of chemical structures and bioactivity data in early drug discovery

Nolen Perualila-Tan, Ziv Shkedy, Willem Talloen, Hinrich W.H. Göhlmann, QSTAR Consortium, Adetayo Kasim, Marijk Van Moerbeke

Research output: Contribution to journalArticlepeer-review

Abstract

The modern process of discovering candidate molecules in early drug discovery phase includes a wide range of approaches to extract vital information from the intersection of biology and chemistry. A typical strategy in compound selection involves compound clustering based on chemical similarity to obtain representative chemically diverse compounds (not incorporating potency information). In this paper, we propose an integrative clustering approach that makes use of both biological (compound efficacy) and chemical (structural features) data sources for the purpose of discovering a subset of compounds with aligned structural and biological properties. The datasets are integrated at the similarity level by assigning complementary weights to produce a weighted similarity matrix, serving as a generic input in any clustering algorithm. This new analysis work flow is semi-supervised method since, after the determination of clusters, a secondary analysis is performed wherein it finds differentially expressed genes associated to the derived integrated cluster(s) to further explain the compound-induced biological effects inside the cell. In this paper, datasets from two drug development oncology projects are used to illustrate the usefulness of the weighted similarity-based clustering approach to integrate multi-source high-dimensional information to aid drug discovery. Compounds that are structurally and biologically similar to the reference compounds are discovered using this proposed integrative approach.
Original languageEnglish
Article number1650018
Number of pages22
JournalJournal of Bioinformatics and Computational Biology
Volume14
DOIs
Publication statusPublished - 2016

Fields of science

  • 303 Health Sciences
  • 304 Medical Biotechnology
  • 304003 Genetic engineering
  • 305 Other Human Medicine, Health Sciences
  • 101004 Biomathematics
  • 101018 Statistics
  • 102 Computer Sciences
  • 102001 Artificial intelligence
  • 102004 Bioinformatics
  • 102010 Database systems
  • 102015 Information systems
  • 102019 Machine learning
  • 106023 Molecular biology
  • 106002 Biochemistry
  • 106005 Bioinformatics
  • 106007 Biostatistics
  • 106041 Structural biology
  • 301 Medical-Theoretical Sciences, Pharmacy
  • 302 Clinical Medicine

JKU Focus areas

  • Computation in Informatics and Mathematics
  • Nano-, Bio- and Polymer-Systems: From Structure to Function
  • Medical Sciences (in general)
  • Health System Research
  • Clinical Research on Aging

Cite this