Projects per year
Abstract
We aim at activity and context recognition in opportunistic sensor setups. The system ought to make use of sensor
modalities that just happen to be available, rather than to rely on specific sensor deployment. In order to assess opportunistic activity recognition methods,
we collected a large-scale dataset of complex activities in a highly sensor rich environment, with 72 sensors of 10 modalities in the environment, in objects and
on-body. The dataset contains composite and atomic activities in large numbers (>28000 hand interactions). We present the activity scenario and the sensor setup.
We show the user's activities and the corresponding sensor signals side by side. We argue that such a visualization may be an efficient form of dataset documentation,
especially when such a dataset is shared, as it gives an insight into the complexity of the activities and richness of the sensor setup.
Original language | English |
---|---|
Title of host publication | Eighth International Conference on Pervasive Computing |
Number of pages | 4 |
Publication status | Published - May 2010 |
Fields of science
- 102 Computer Sciences
- 102009 Computer simulation
- 102013 Human-computer interaction
- 102019 Machine learning
- 102020 Medical informatics
- 102021 Pervasive computing
- 102022 Software development
- 102025 Distributed systems
- 202017 Embedded systems
- 211902 Assistive technologies
- 211912 Product design
Projects
- 1 Finished
-
Opportunity - Activity and Context Recognition with Opportunistic Sensor Configurations
Balazs, C. (Researcher), Doppler, J. (Researcher), Holzmann, C. (Researcher), Kurz, M. (Researcher) & Ferscha, A. (PI)
01.02.2009 → 31.01.2012
Project: Funded research › EU - European Union