V2X Database Driven Traffic Speed Prediction

Daniel Adelberger, Junpeng Deng, Luigi Del Re

Research output: Chapter in Book/Report/Conference proceedingConference proceedingspeer-review

Abstract

Knowledge of the upcoming traffic velocity along a route can help in many respects, among them optimizing energy management for hybrid vehicles, which, for instance, could reduce instantaneous battery usage if a traffic jam is upcoming in the next future. While such kind of knowledge can hardly be precise on a single-vehicle level, we show in this paper that a prediction method which combines present and past Vehicle-to-Everything (V2X) information can strongly improve the energy efficiency. Our approach is first compared with other prevailing prediction methods and its advantages in terms of stability and accuracy are shown. Then the prediction results are applied in a hybrid powertrain control example, in which its potential in fuel savings are illustrated.
Original languageEnglish
Title of host publicationITS
Number of pages7
Publication statusPublished - 2021

Fields of science

  • 206002 Electro-medical engineering
  • 207109 Pollutant emission
  • 202 Electrical Engineering, Electronics, Information Engineering
  • 202027 Mechatronics
  • 202034 Control engineering
  • 203027 Internal combustion engines
  • 206001 Biomedical engineering

JKU Focus areas

  • Digital Transformation
  • Sustainable Development: Responsible Technologies and Management

Cite this