Using transcriptomics to guide lead optimization in drug discovery projects

Bie Verbist, Günter Klambauer, Liesbet Vervoort, Willem Talloen, QSTAR Consortium, Ziv Shkedy, Olivier Thas, Andreas Bender, Hinrich W.H. Göhlmann, Sepp Hochreiter

Research output: Contribution to journalArticlepeer-review

Abstract

The pharmaceutical industry is faced with steadily declining R&D efficiency which results in fewer drugs reaching the market despite increased investment. A major cause for this low efficiency is the failure of drug candidates in late-stage development owing to safety issues or previously undiscovered side-effects. We analyzed to what extent gene expression data can help to de-risk drug development in early phases by detecting the biological effects of compounds across disease areas, targets and scaffolds. For eight drug discovery projects within a global pharmaceutical company, gene expression data were informative and able to support go/no-go decisions. Our studies show that gene expression profiling can detect adverse effects of compounds, and is a valuable tool in early-stage drug discovery decision making.
Original languageEnglish
Pages (from-to)505-513
Number of pages9
JournalDrug Discovery Today
Volume20
Issue number5
DOIs
Publication statusPublished - 2015

Fields of science

  • 303 Health Sciences
  • 304 Medical Biotechnology
  • 304003 Genetic engineering
  • 305 Other Human Medicine, Health Sciences
  • 101004 Biomathematics
  • 101018 Statistics
  • 102 Computer Sciences
  • 102001 Artificial intelligence
  • 102004 Bioinformatics
  • 102010 Database systems
  • 102015 Information systems
  • 102019 Machine learning
  • 106023 Molecular biology
  • 106002 Biochemistry
  • 106005 Bioinformatics
  • 106007 Biostatistics
  • 106041 Structural biology
  • 301 Medical-Theoretical Sciences, Pharmacy
  • 302 Clinical Medicine

JKU Focus areas

  • Computation in Informatics and Mathematics
  • Nano-, Bio- and Polymer-Systems: From Structure to Function
  • Medical Sciences (in general)
  • Health System Research
  • Clinical Research on Aging

Cite this