Projects per year
Abstract
Electrical impedance tomography (EIT) is recently demonstrated to be viable for damage localization over a spatial area. The algorithm reconstructs the spatial conductivity distribution within a defined boundary via boundary voltage measurements. To solve this inverse problem, a finite element model (FEM) conforming to the interrogated geometry is required. Previous studies on identifying a center crack’s propagation suggests that an FEM-updating strategy may help identify both the existence of a crack and the plastic zones formed around the crack’s tips. In this paper a data-driven algorithm is applied to automatically update the FEM. The self-organizing map algorithm is adopted to categorize the reconstructed conductivity data, tracing the boundary of the crack to be updated as material-absence. The EIT results from the updated FEM model are able to identify damage location and damage severity with desired accuracy
Original language | English |
---|---|
Title of host publication | SPIE Smart Structures + Nondestructive Evaluation |
Number of pages | 8 |
Volume | 10598 |
DOIs | |
Publication status | Published - Mar 2018 |
Publication series
Name | Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2018 |
---|
Fields of science
- 203 Mechanical Engineering
- 201117 Lightweight design
- 203011 Lightweight design
JKU Focus areas
- Mechatronics and Information Processing
- Engineering and Natural Sciences (in general)
Projects
- 1 Finished
-
CD-Laboratory for Structural Strength Control of Lightweight Constructions
Heinzlmeier, L. (Researcher), Humer, E. (Researcher), Humer, C. (Researcher), Karna, N. K. (Researcher), Kimpfbeck, D. (Researcher), Kralovec-Rödhammer, C. (Researcher), Nonn, S. (Researcher), Sindinger, S.-L. (Researcher), Viechtbauer, C. (Researcher), Wagner, J. (Researcher), Zhao, Y. (Researcher) & Schagerl, M. (PI)
01.05.2014 → 31.12.2021
Project: Funded research › Other mainly public funds