Abstract
This paper is concerned with the data-driven construction of fuzzy systems from the viewpoint of regularization and approximation theory, where we consider the important subclass of Sugeno controllers. Generally, we obtain a nonlinear constrained least squares approximation problem which is ill-posed. Therefore, nonlinear regularization theory has to be employed. We analyze a smoothing method, which is common in spline approximation, as well as Tikhonov regularization, along with rules how to choose the regularization parameters based on nonlinear regularization theory considering the error due to noisy data.For solving the regularized nonlinear least squares problem, we use a generalized Gauss-Newton like method. A typical numerical example shows that the regularized problem is not only more robust, but also favors solutions that are easily interpretable, which is an important quality criterion for fuzzy systems.
| Original language | English |
|---|---|
| Title of host publication | Progress in Industrial Mathematics at ECMI 2000 |
| Number of pages | 6 |
| Publication status | Published - Jan 2002 |
Fields of science
- 101 Mathematics
- 101020 Technical mathematics
- 101004 Biomathematics
- 101027 Dynamical systems
- 101013 Mathematical logic
- 101028 Mathematical modelling
- 101014 Numerical mathematics
- 101024 Probability theory
- 102001 Artificial intelligence
- 102003 Image processing
- 102009 Computer simulation
- 102019 Machine learning
- 102023 Supercomputing
- 202027 Mechatronics
- 206001 Biomedical engineering
- 206003 Medical physics
- 102035 Data science