Projects per year
Abstract
Users of personal health devices want an easy way to permanently store their personal health sensor data and to share them with physicians and other authorized users, trusting that the data will not be disclosed to third parties. Digital watermarking for data leakage detection aims to prevent the unauthorized disclosure of data by imperceptibly marking the data for each authorized user, so that the authorized user can be identified as the data leaker and be held accountable. In this paper we present an approach for digital watermarking conceived as part of a personal health sensor data management platform. The approach comprises techniques for informed watermark embedding and non-blind watermark detection. Based on a proof-of-concept prototype, the approach is evaluated regarding configurability, robustness, and performance.
Keywords: Medical Sensor Data, Digital Fingerprinting, Time Series Data
Original language | English |
---|---|
Title of host publication | Proceedings of the 19th International Workshop on Digital-forensics and Watermarking (IWDW 2020), Nov 25-27, 2020, Melbourne, Australia |
Editors | X. Zhao, Y.-Q. Shi, A. Piva, H. J. Kim |
Publisher | Springer Verlag |
Number of pages | 15 |
ISBN (Print) | 978-3-030-69449-4 |
DOIs | |
Publication status | Published - Nov 2020 |
Publication series
Name | Lecture Notes in Computer Science (LNCS) |
---|
Fields of science
- 102 Computer Sciences
- 102010 Database systems
- 102015 Information systems
- 102016 IT security
- 102025 Distributed systems
- 102027 Web engineering
- 102028 Knowledge engineering
- 102030 Semantic technologies
- 102033 Data mining
- 102035 Data science
- 502050 Business informatics
- 503008 E-learning
JKU Focus areas
- Digital Transformation
Projects
- 1 Finished
-
MyPCH - My Personal Connected Health
Schütz, C. G. (Researcher) & Neumayr, B. (PI)
01.10.2019 → 01.10.2020
Project: Funded research › Other sponsors