Towards Exploring the Potential of Alternative Quantum Computing Architectures

Arighna Deb, Gerhard W. Dueck, Robert Wille

Research output: Chapter in Book/Report/Conference proceedingConference proceedingspeer-review

Abstract

The recent advances in the physical realization of Noisy Intermediate Scale Quantum (NISQ) computers have motivated research on design automation that allows users to execute quantum algorithms on them. Certain physical constraints in the architectures restrict how logical qubits used to describe the algorithm can be mapped to physical qubits used to realize the corresponding functionality. Thus far, this has been addressed by inserting additional operations in order to overcome the physical constrains. However, all these approaches have taken the existing architectures as invariant and did not explore the potential of changing the quantum architecture itself - a valid option as long as the underlying physical constrains remain satisfied. In this work, we propose initial ideas to explore this potential. More precisely, we introduce several schemes for the generation of alternative coupling graphs (and, by this, quantum computing architectures) that still might be able to satisfy physical constraints but, at the same time, allow for a more efficient realization of the desired quantum functionality.
Original languageEnglish
Title of host publicationDesign, Automation and Test in Europe (DATE)
Number of pages4
Publication statusPublished - 2020

Fields of science

  • 102 Computer Sciences
  • 202 Electrical Engineering, Electronics, Information Engineering

JKU Focus areas

  • Digital Transformation

Cite this