The Unpolarized and Polarized Single-Mass Three-Loop Heavy Flavor Operator Matrix Elements $A_{gg, Q}$ and $Delta A_{gg, Q}$

Jakob Ablinger, A. Behring, Johannes Blümlein, Abilio De Freitas, A. Goedicke, A. von Manteuffel, Carsten Schneider, K. Schönwald

Research output: Contribution to journalArticlepeer-review

Abstract

We calculate the gluonic massive operator matrix elements in the unpolarized and polarized cases, $A_{gg,Q}(x,mu^2)$ and $Delta A_{gg,Q}(x,mu^2)$, at three--loop order for a single mass. These quantities contribute to the matching of the gluon distribution in the variable flavor number scheme. The polarized operator matrix element is calculated in the Larin scheme. These operator matrix elements contain finite binomial and inverse binomial sums in Mellin $N$--space and iterated integrals over square root--valued alphabets in momentum fraction $x$--space. We derive the necessary analytic relations for the analytic continuation of these quantities from the even or odd Mellin moments into the complex plane, present analytic expressions in momentum fraction $x$--space and derive numerical results. The present results complete the gluon transition matrix elements both of the single-- and double--mass variable flavor number scheme to three--loop order.
Original languageEnglish
Article number134
Pages (from-to)1-55
Number of pages55
JournalThe Journal of High Energy Physics
Issue number12, Article 134
DOIs
Publication statusPublished - 2022

Fields of science

  • 101 Mathematics
  • 101001 Algebra
  • 101005 Computer algebra
  • 101009 Geometry
  • 101012 Combinatorics
  • 101013 Mathematical logic
  • 101020 Technical mathematics

JKU Focus areas

  • Digital Transformation

Cite this