The influence of poly(ethylene glycol) on the micelle formation of alkyl maltosides used in membrane protein crystallization

Frank Müh, Doerte Di Fiore, A. Zouni

Research output: Contribution to journalArticlepeer-review

Abstract

With the aim of better understanding the phase behavior of alkyl maltosides (n-alkyl-beta-D-maltosides, C(n)G(2)) under the conditions of membrane protein crystallization, we studied the influence of poly(ethylene glycol) (PEG) 2000, a commonly used precipitating agent, on the critical micelle concentration (CMC) of the alkyl maltosides by systematic variation of the number n of carbon atoms in the alkyl chain (n = 10, 11, and 12) and the concentration of PEG2000 (chi) in a buffer suitable for the crystallization of cyanobacterial photosystem II. CMC measurements were based on established fluorescence techniques using pyrene and 8-anilinonaphthalene-1-sulfonate (ANS). We found an increase of the CMC with increasing PEG concentration according to ln(CMC/CMC0) = k(P)chi, where CMC0 is the CMC in the absence of PEG and k(P) is a constant that we termed the "polymer constant". In parallel, we measured the influence of PEG2000 on the surface tension of detergent-free buffer solutions. At PEG concentrations chi > 1% w/v, the surface pressure pi(s)(chi) = gamma(0) - gamma(chi) was found to depend linearly on the PEG concentration according to pi(s)(chi) = kappa chi + pi(s)(0), where gamma(0) is the surface tension in the absence of PEG. Based on a molecular thermodynamic modeling, CMC shifts and surface pressure due to PEG are related, and it is shown that k(P) = kappa c(n) + eta, where c(n) is a detergent-specific constant depending inter alia on the alkyl chain length n and eta is a correction for molarity. Thus, knowledge of the surface pressure in the absence of a detergent allows for the prediction of the CMC shift. The PEG effect on the CMC is discussed concerning its molecular origin and its implications for membrane protein solubilization and crystallization.
Original languageEnglish
Pages (from-to)11678-11691
Number of pages14
JournalPCCP - Physical Chemistry Chemical Physics
Volume17
Issue number17
DOIs
Publication statusPublished - 07 May 2015

Fields of science

  • 103 Physics, Astronomy
  • 103015 Condensed matter
  • 103025 Quantum mechanics
  • 106006 Biophysics
  • 103036 Theoretical physics
  • 104017 Physical chemistry

JKU Focus areas

  • Nano-, Bio- and Polymer-Systems: From Structure to Function
  • Engineering and Natural Sciences (in general)

Cite this