Test Pattern Generation Effort Evaluation of Reversible Circuits

Abhoy Kole, Robert Wille, Kamalika Datta, Indranil Sengupta

Research output: Chapter in Book/Report/Conference proceedingConference proceedingspeer-review

Abstract

The problem of synthesis and optimization of reversible and quantum circuits have drawn the attention of researchers for more than one decade. With physical technologies for realizing the quantum bits (qubits) being announced, the problem of testing such circuits is also becoming important. There have been several works for identifying fault models for reversible circuits, and test generation algorithms for the same. In this work, we aim to show that the problem of testing reversible circuits with respect to recent fault models (like missing gate, missing control, reduced control, etc.) is easy, and it is not really worth to spend time and effort for generating better test patterns. To establish this point, test generators using two extreme scenarios have been implemented: a naive test generator that is very fast but does not guarantee optimality and a SAT-based test generator that is slow but guarantees smallest test sets. Experiments have been carried out on reversible benchmark circuits, which establish the fact that the size of the test patterns does not drastically differ across the spectrum.
Original languageEnglish
Title of host publicationConference on Reversible Computation
Pages162-175
Number of pages14
Publication statusPublished - 2017

Fields of science

  • 102 Computer Sciences
  • 202 Electrical Engineering, Electronics, Information Engineering

JKU Focus areas

  • Computation in Informatics and Mathematics
  • Mechatronics and Information Processing
  • Nano-, Bio- and Polymer-Systems: From Structure to Function

Cite this