TY - JOUR
T1 - TERT expression is susceptible to BRAF and ETS-factor inhibition in BRAFV600E/TERT promoter double-mutated glioma
AU - Gabler, L
AU - Lötsch, Daniela
AU - Kirchhofer, D
AU - van Schoonhoven, S
AU - Schmidt, HM
AU - Mayr, L
AU - Pirker, C
AU - Neumayer, K
AU - Dinhof, C
AU - Kastler, Lucia
AU - Azizi, AA
AU - Dorfer, Christian
AU - Czech, Thomas
AU - Haberler, Christine
AU - Peyrl, Andreas
AU - Kumar, R
AU - Slavc, Irene
AU - Spiegl-Kreinecker, Sabine
AU - Gojo, Johannes
AU - Berger, Walter
PY - 2019
Y1 - 2019
N2 - The BRAF gene and the TERT promoter are among the most frequently altered genomic loci in low-grade (LGG) and high-grade-glioma (HGG), respectively. The coexistence of BRAF and TERT promoter aberrations characterizes a subset of aggressive glioma. Therefore, we investigated interactions between those alterations in malignant glioma. We analyzed co-occurrence of BRAFV600E and TERT promoter mutations in our clinical data (n = 8) in addition to published datasets (n = 103) and established a BRAFV600E-positive glioma cell panel (n = 9) for in vitro analyses. We investigated altered gene expression, signaling events and TERT promoter activity upon BRAF- and E-twenty-six (ETS)-factor inhibition by qRT-PCR, chromatin immunoprecipitation (ChIP), Western blots and luciferase reporter assays. TERT promoter mutations were significantly enriched in BRAFV600E-mutated HGG as compared to BRAFV600E-mutated LGG. In vitro, BRAFV600E/TERT promoter double-mutant glioma cells showed exceptional sensitivity towards BRAF-targeting agents. Remarkably, BRAF-inhibition attenuated TERT expression and TERT promoter activity exclusively in double-mutant models, while TERT expression was undetectable in BRAFV600E-only cells. Various ETS-factors were broadly expressed, however, only ETS1 expression and phosphorylation were consistently downregulated following BRAF-inhibition. Knock-down experiments and ChIP corroborated the notion of a functional role for ETS1 and, accordingly, all double-mutant tumor cells were highly sensitive towards the ETS-factor inhibitor YK-4-279. In conclusion, our data suggest that concomitant BRAFV600E and TERT promoter mutations synergistically support cancer cell proliferation and immortalization. ETS1 links these two driver alterations functionally and may represent a promising therapeutic target in this aggressive glioma subgroup.
AB - The BRAF gene and the TERT promoter are among the most frequently altered genomic loci in low-grade (LGG) and high-grade-glioma (HGG), respectively. The coexistence of BRAF and TERT promoter aberrations characterizes a subset of aggressive glioma. Therefore, we investigated interactions between those alterations in malignant glioma. We analyzed co-occurrence of BRAFV600E and TERT promoter mutations in our clinical data (n = 8) in addition to published datasets (n = 103) and established a BRAFV600E-positive glioma cell panel (n = 9) for in vitro analyses. We investigated altered gene expression, signaling events and TERT promoter activity upon BRAF- and E-twenty-six (ETS)-factor inhibition by qRT-PCR, chromatin immunoprecipitation (ChIP), Western blots and luciferase reporter assays. TERT promoter mutations were significantly enriched in BRAFV600E-mutated HGG as compared to BRAFV600E-mutated LGG. In vitro, BRAFV600E/TERT promoter double-mutant glioma cells showed exceptional sensitivity towards BRAF-targeting agents. Remarkably, BRAF-inhibition attenuated TERT expression and TERT promoter activity exclusively in double-mutant models, while TERT expression was undetectable in BRAFV600E-only cells. Various ETS-factors were broadly expressed, however, only ETS1 expression and phosphorylation were consistently downregulated following BRAF-inhibition. Knock-down experiments and ChIP corroborated the notion of a functional role for ETS1 and, accordingly, all double-mutant tumor cells were highly sensitive towards the ETS-factor inhibitor YK-4-279. In conclusion, our data suggest that concomitant BRAFV600E and TERT promoter mutations synergistically support cancer cell proliferation and immortalization. ETS1 links these two driver alterations functionally and may represent a promising therapeutic target in this aggressive glioma subgroup.
UR - https://www.ncbi.nlm.nih.gov/pubmed/31391125
U2 - 10.1186/s40478-019-0775-6
DO - 10.1186/s40478-019-0775-6
M3 - Article
SN - 2051-5960
VL - 7
JO - Acta Neuropathologica Communications
JF - Acta Neuropathologica Communications
M1 - 128
ER -