Abstract
Among the synthetic fibers, glass fibers (GF) are most widely used in thermoplastic short‐fiber‐reinforced polymers (SFRP), as they offer good strength and stiffness, impact resistance, chemical resistance, and thermal stability at a low price. Carbon fibers (CF) are applied instead of GF, when highest stiffness is required. Other types of synthetic fibers like aramid (AF), basalt (BF), polyacrylonitrile (PAN‐F), polyethylene terephthalate (PET‐F), or polypropylene fibers (PP‐F) are rarely used in SFRP, although they offer some advantages compared with GF. The aim of this article is, to give an overview of various fiber types with regard to their mechanical properties, densities, and prices as well as the performance of their thermoplastic composites. The mechanical properties are presented as Ashby plots of tensile strength versus tensile modulus, both in absolute and specific (absolute value divided by density) values. This overview also focuses on modification of fiber/matrix interaction, as interfacial adhesion has a huge impact on composite performance. A summary of established methods for characterization of fibers, polymers, and composites completes this article. POLYM. COMPOS., 35:227–236, 2014. © 2013 Society of Plastics Engineers
Original language | English |
---|---|
Pages (from-to) | 227-236 |
Number of pages | 10 |
Journal | Polymer Composites |
Volume | 35 |
Issue number | 2 |
DOIs | |
Publication status | Published - Feb 2014 |
Fields of science
- 304007 Tissue engineering
- 204002 Chemical reaction engineering
- 210004 Nanomaterials
- 104 Chemistry
- 104002 Analytical chemistry
- 104011 Materials chemistry
- 104014 Surface chemistry
- 104016 Photochemistry
- 104018 Polymer chemistry
- 104008 Catalysis
- 104010 Macromolecular chemistry
- 104015 Organic chemistry
- 104019 Polymer sciences
- 106002 Biochemistry
- 107002 Bionics
- 301305 Medical chemistry
- 301207 Pharmaceutical chemistry
- 301904 Cancer research
- 302009 Chemotherapy
JKU Focus areas
- Nano-, Bio- and Polymer-Systems: From Structure to Function
- Engineering and Natural Sciences (in general)