Abstract
Samarium ions of 200 keV in energy were implanted into highly-resistive molecular-beam-epitaxy grown GaN thin films with a focused-ion-beam implanter at room temperature. The implantation doses range from 1 × 1014 to 1 × 1016 cm−2. Structural properties studied by x-ray diffraction and Raman-scattering spectroscopy revealed Sm incorporation into GaN matrix without secondary phase. The optical measurements showed that the band gap and optical constants changed very slightly by the implantation. Photoluminescence measurements showed emission spectra similar to p-type GaN for all samples. Magnetic investigations with a superconducting quantum interference device identified magnetic ordering for Sm dose of and above 1 × 1015 cm−2 before thermal annealing, while ferromagnetism was only observed after thermal annealing from the sample with highest Sm dose. The long-range magnetic ordering can be attributed to interaction of Sm ions through the implantation-induced Ga vacancy.
Original language | English |
---|---|
Article number | 043909 |
Pages (from-to) | 043909 |
Number of pages | 8 |
Journal | Journal of Applied Physics |
Volume | 116 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2014 |
Fields of science
- 210006 Nanotechnology
- 103 Physics, Astronomy
- 103011 Semiconductor physics
- 103018 Materials physics
- 202032 Photovoltaics
- 103009 Solid state physics
- 103017 Magnetism
JKU Focus areas
- Engineering and Natural Sciences (in general)