Residual-Based Fault Detection using Soft Computing Techniques for Condition Monitoring at Rolling Mills

Francisco Serdio, Edwin Lughofer, Kurt Pichler, Thomas Buchegger, Hajrudin Efendic

Research output: Contribution to journalArticlepeer-review

Abstract

We propose a residual-based approach for fault detection at rolling mills based on data-driven soft computing techniques. It transforms the original measurement signals into a model space by identifying the multi-dimensional relationships contained in the system. Residuals, calculated as deviations from the identified relations and normalized with the model uncertainties, are analyzed on-line with incremental/decremental statistical techniques. The identification of the models and the fault detection concept are conducted solely based on the on-line recorded data streams. Thus, neither annotated samples nor fault patterns/models, which are often very time-intensive and costly to obtain, need to be available a priori. As model architectures, we used pure linear models, a new genetic variant of Box–Cox models (termed as Genetic Box–Cox) reflecting weak non-linearities and Takagi–Sugeno fuzzy models being able to express more complex non-linearities, which are trained with sparse learning techniques. This choice gives us a clue about the degree of non-linearity contained in the system. Our approach is compared with several state-of-the-art approaches including a PCA-based approach, a univariate time-series analysis, a one-class SVM (fault-free) pattern recognizer in the signal space and a combined approach based on time-series model parameter changes.
Original languageEnglish
Pages (from-to)304-320
Number of pages17
JournalInformation Sciences
Volume259
DOIs
Publication statusPublished - Jan 2014

Fields of science

  • 211913 Quality assurance
  • 101 Mathematics
  • 101001 Algebra
  • 101013 Mathematical logic
  • 101019 Stochastics
  • 101020 Technical mathematics
  • 102 Computer Sciences
  • 102001 Artificial intelligence
  • 102003 Image processing
  • 202027 Mechatronics

JKU Focus areas

  • Computation in Informatics and Mathematics
  • Mechatronics and Information Processing
  • Nano-, Bio- and Polymer-Systems: From Structure to Function

Cite this