Reference Modeling for Data Analysis: The BIRD Approach

Christoph Georg Schütz, Bernd Neumayr, Michael Schrefl, Thomas Neuböck

Research output: Contribution to journalArticlepeer-review

Abstract

Reference models for data analysis with data warehouses may consist of multidimensional reference models and analysis graphs. Multidimensional reference models are best-practice domain-specific data models for online analytical processing. Analysis graphs are reference models of analysis processes for event-driven data analysis. Small and medium-sized enterprises (SMEs) as well as large multinational companies may benefit from the use of reference models for data analysis. The availability of multidimensional reference models lowers the obstacles that inhibit SMEs from using business intelligence (BI) technology. Multinational companies may define multidimensional reference models for increased compliance among subsidiaries and departments. Furthermore, the definition of analysis graphs facilitates the handling of business events for both SMEs and large companies. Modelers may customize the chosen reference models, tailoring the models to the specific needs of the individual company or local subsidiary. Customizations may consist of additions, omissions, and modifications with respect to the reference model. In this paper, we propose a metamodel and customization approach for multidimensional reference models and analysis graphs. We specifically address the explicit modeling of key performance indicators as well as the definition of analysis situations and analysis graphs. Keywords: Conceptual modeling; business intelligence; online analytical processing; dimensional fact model; metadata management; data warehouses
Original languageEnglish
Article number1650006
Number of pages46
JournalInternational Journal of Cooperative Information Systems (IJCIS)
Volume25
Issue number2
DOIs
Publication statusPublished - Jun 2016

Fields of science

  • 102 Computer Sciences
  • 102010 Database systems
  • 102015 Information systems
  • 102016 IT security
  • 102025 Distributed systems
  • 102027 Web engineering
  • 102028 Knowledge engineering
  • 102030 Semantic technologies
  • 102033 Data mining
  • 502050 Business informatics
  • 503008 E-learning

JKU Focus areas

  • Computation in Informatics and Mathematics
  • Management and Innovation

Cite this