Recent advances on evolving intelligent systems and applications

Fernando Gomide, Edwin Lughofer

Research output: Other contribution

Abstract

During the last decade, evolving intelligent systems (EIS) have been become an important cornerstone for resolving any dynamic learning and modeling demands in (on-line) real-world modeling problems, especially with an intensified dynamic data streaming context, changing environmental conditions and system states or as part of large-scale problems, e.g. web mining, multi-sensor networks, sequential video analysis, Big Data or predictive maintenance in factories for the future. The necessity is underlined by the increasing dynamic and complexity of modeling problems as well as the increasing sizes of data bases and storages, which induce that conventional batch learning systems cannot be applied within a reasonable time frame and sufficient accuracy.
Original languageEnglish
PublisherSpringer
Number of pages2
Volume5
Publication statusPublished - 2014

Fields of science

  • 101 Mathematics
  • 101013 Mathematical logic
  • 101024 Probability theory
  • 102001 Artificial intelligence
  • 102003 Image processing
  • 102019 Machine learning
  • 603109 Logic
  • 202027 Mechatronics

JKU Focus areas

  • Computation in Informatics and Mathematics
  • Mechatronics and Information Processing
  • Nano-, Bio- and Polymer-Systems: From Structure to Function

Cite this