Abstract
The task of real-time alignment between a music performance and the corresponding score (sheet music), also known as score following, poses a challenging multi-modal machine learning problem. Training a system that can solve this task robustly with live audio and real sheet music (i.e., scans or score images) requires precise ground truth alignments between audio and note-coordinate positions in the score sheet images. However, these kinds of annotations are difficult and costly to obtain, which is why research in this area mainly utilizes synthetic audio and sheet images to train and evaluate score following systems. In this work, we propose a method that does not solely rely on note alignments but is additionally capable of leveraging data with annotations of lower granularity, such as bar or score system alignments. This allows us to use a large collection of real-world piano performance recordings coarsely aligned to scanned score sheet images and, as a consequence, improve over current state-of-the-art approaches.
Original language | English |
---|---|
Article number | 718340 |
Number of pages | 13 |
Journal | Frontiers in Computer Science |
DOIs | |
Publication status | Published - 2021 |
Fields of science
- 202002 Audiovisual media
- 102 Computer Sciences
- 102001 Artificial intelligence
- 102003 Image processing
- 102015 Information systems
JKU Focus areas
- Digital Transformation