Probing Binding Pocket of Serotonin Transporter by Single Molecular Force Spectroscopy on Living Cells

Linda Wildling, Christian Rankl, Thomas Haselgrübler, Hermann Gruber, M. Holy, M. F. Zou, Michael Freissmuth, Harald H. Sitte, Peter Hinterdorfer

Research output: Contribution to journalArticlepeer-review

Abstract

The serotonin transporter (SERT) terminates neurotransmission by removing serotonin from the synaptic cleft. In addition, it is the site of action of antidepressants (which block the transporter) and of amphetamines (which induce substrate efflux). The interaction energies involved in binding of such compounds to the transporter are unknown. Here, we used atomic force microscopy (AFM) to probe single molecular interactions between the serotonin transporter and MFZ2-12 (a potent cocaine analog) in living CHOK1 cells. For the AFM measurements MFZ2-12 was immobilized on AFM tips by using a heterobifunctional crosslinker. By varying the pulling velocity in force distance cycles drug/transporter complexes were ruptured at different force loadings allowing for mapping of the interaction energy landscape. We derived chemical rate constants from these recordings and compared them with those inferred from inhibition of transport and ligand binding: koff values were in good agreement with those derived from uptake experiments; in contrast, the kon values were scaled down when determined by AFM. Our observations generated new insights into the energy landscape of the interaction between SERT and inhibitors. They thus provide a useful framework for molecular dynamics simulations by exploring the range of forces and energies that operate during the binding reaction.
Original languageEnglish
Pages (from-to)105-113
Number of pages9
JournalJournal of Biological Chemistry
Volume287
Issue number1
DOIs
Publication statusPublished - 02 Jan 2012

Fields of science

  • 103036 Theoretical physics
  • 211904 Biomechanics
  • 103020 Surface physics
  • 210 Nanotechnology
  • 104010 Macromolecular chemistry
  • 106006 Biophysics
  • 106022 Microbiology
  • 106048 Animal physiology
  • 209 Industrial Biotechnology
  • 304 Medical Biotechnology
  • 404 Agricultural Biotechnology, Food Biotechnology
  • 106049 Ultrastructure research
  • 103021 Optics
  • 106002 Biochemistry
  • 104017 Physical chemistry
  • 208 Environmental Biotechnology
  • 104014 Surface chemistry
  • 106023 Molecular biology
  • 107 Other Natural Sciences
  • 301110 Physiology
  • 301206 Pharmacology
  • 206 Medical Engineering
  • 301306 Medical molecular biology
  • 302044 Medical physics
  • 301902 Immunology
  • 305910 Traffic medicine

JKU Focus areas

  • Engineering and Natural Sciences (in general)

Cite this