Position Control for Hysteresis Motors: Transient-Time Model and Field-Oriented Control

Lei Zhou, Wolfgang Gruber, David L. Trumper

Research output: Contribution to journalArticlepeer-review

Abstract

This paper studies the modeling and field-oriented control (FOC) for hysteresis motors, with the goal of achieving position control of hysteresis motors for servo applications. Hysteresis motors include a wide range of machines with solid cylindrical or ring-shaped steel rotors, which generate torque primarily via the magnetic hysteresis effect of the rotor material. Previously, hysteresis motors have been mainly used under open-loop operation. However, they are also attractive for position control in some special applications such as in-vacuum operation or when smooth running and high speed is required. In this paper, an equivalent circuit model for hysteresis motors that describes the motor's transient-time dynamics is introduced, and a state-space model for hysteresis motors is developed. This model is used to construct a rotor flux orientation observer for the FOC for hysteresis motors. Three methods for estimating the rotor field angle are introduced. The proposed FOC-based position control method was tested with three hysteresis motors, including two custom-made motors of different rotor materials and one off-the-shelf hysteresis motor. Experimental results show that position control for all three hysteresis motors can reach a bandwidth of 130 Hz with the proposed methods. To the authors' best knowledge, this is the first experimental study on FOC and position control for hysteresis motors.
Original languageEnglish
Pages (from-to)3197–3207
Number of pages10
JournalIEEE Transactions on Industry Applications
Volume54
Issue number4
DOIs
Publication statusPublished - Aug 2018

Fields of science

  • 202 Electrical Engineering, Electronics, Information Engineering
  • 202009 Electrical drive engineering
  • 202011 Electrical machines
  • 202025 Power electronics
  • 202027 Mechatronics

JKU Focus areas

  • Mechatronics and Information Processing

Cite this