Polynomial functions on subdirect products

Kalle Kaarli, Peter Mayr

Research output: Contribution to journalArticlepeer-review

Abstract

A congruence preserving function on a subdirect product of two finite Mal’cev algebras is polynomial if it induces polynomial functions on the subdirect factors and there are no skew congruences between the projection kernels. As a special case, if the direct product A × B of finite algebras A and B in a congruence permutable variety has no skew congruences, then the polynomial functions on A × B are exactly direct products of polynomials on A and on B. These descriptions apply in particular to classical polynomial functions on nonassociative rings. Also, for finite algebras A, B in a variety with majority term, the polynomial functions on A × B are exactly the direct products of polynomials on A and on B. However in arbitrary congruence distributive varieties the corresponding result is not true.
Original languageEnglish
Pages (from-to)341-359
Number of pages19
JournalMonatshefte für Mathematik
Volume159
Issue number4
DOIs
Publication statusPublished - Mar 2010

Fields of science

  • 101 Mathematics
  • 101001 Algebra
  • 101005 Computer algebra
  • 101013 Mathematical logic
  • 102031 Theoretical computer science

Cite this