Phenomenological studies on magnetic and mechanical remanence effects in magnetorheological fluids

Thomas Wiener, Christina Offenzeller, David Martetschläger, David Wimmer, Thomas Spirowski, Bernhard Jakoby

Research output: Contribution to journalArticlepeer-review

Abstract

Although magnetorheological fluids (MRF) have been used in science and engineering for many decades and several products based on this technology are known, there is still no consistent routine that properly takes into account major effects in the material. The aim of this work is to establish a series of steps, from the preparation of the fluid through the demagnetization routine to the choice of the angular evaluation point, which will allow to achieve stable and reproducible results regarding the material’s response to magnetic fields and mechanical actuation. As a major result of this work, a general demagnetization routine and a method for subsequent reproducible evaluation accounting for the long-term time-dependent behavior of the MRF were identified. Our efforts are aimed at exploring the following targets and questions: how can a stable initial state be ensured? Why is the initial measurement of MRF commonly hardly reproducible? How can reproducible measurements for characterizing the material be obtained? For each of these items, we developed procedures or suggest measures and discuss to what extent they solve the underlying issues and what had to be left for future investigations.
Original languageEnglish
Article number045004
JournalSmart Materials and Structures
Volume33
Issue number4
Publication statusPublished - Apr 2024

Fields of science

  • 202019 High frequency engineering
  • 202021 Industrial electronics
  • 202036 Sensor systems
  • 203017 Micromechanics
  • 202 Electrical Engineering, Electronics, Information Engineering
  • 202027 Mechatronics
  • 202028 Microelectronics
  • 202037 Signal processing
  • 502058 Digital transformation

JKU Focus areas

  • Digital Transformation

Cite this