PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers

Phillip Lippe, Bas Veeling, Paris Perdikaris, Richard Turner, Johannes Brandstetter

Research output: Chapter in Book/Report/Conference proceedingConference proceedingspeer-review

Abstract

Time-dependent partial differential equations (PDEs) are ubiquitous in science and engineering. Recently, mostly due to the high computational cost of traditional solution techniques, deep neural network based surrogates have gained increased interest. The practical utility of such neural PDE solvers relies on their ability to provide accurate, stable predictions over long time horizons, which is a notoriously hard problem. In this work, we present a large-scale analysis of common temporal rollout strategies, identifying the neglect of non-dominant spatial frequency information, often associated with high frequencies in PDE solutions, as the primary pitfall limiting stable, accurate rollout performance. Based on these insights, we draw inspiration from recent advances in diffusion models to introduce PDE-Refiner; a novel model class that enables more accurate modeling of all frequency components via a multistep refinement process. We validate PDE-Refiner on challenging benchmarks of complex fluid dynamics, demonstrating stable and accurate rollouts that consistently outperform state-of-the-art models, including neural, numerical, and hybrid neural-numerical architectures. We further demonstrate that PDE-Refiner greatly enhances data efficiency, since the denoising objective implicitly induces a novel form of spectral data augmentation. Finally, PDE-Refiner's connection to diffusion models enables an accurate and efficient assessment of the model's predictive uncertainty, allowing us to estimate when the surrogate becomes inaccurate.
Original languageEnglish
Title of host publicationConference Neural Information Processing Systems Foundation (NeurIPS 2023)
Number of pages1
Publication statusPublished - 2023

Fields of science

  • 305907 Medical statistics
  • 202017 Embedded systems
  • 202036 Sensor systems
  • 101004 Biomathematics
  • 101014 Numerical mathematics
  • 101015 Operations research
  • 101016 Optimisation
  • 101017 Game theory
  • 101018 Statistics
  • 101019 Stochastics
  • 101024 Probability theory
  • 101026 Time series analysis
  • 101027 Dynamical systems
  • 101028 Mathematical modelling
  • 101029 Mathematical statistics
  • 101031 Approximation theory
  • 102 Computer Sciences
  • 102001 Artificial intelligence
  • 102003 Image processing
  • 102004 Bioinformatics
  • 102013 Human-computer interaction
  • 102018 Artificial neural networks
  • 102019 Machine learning
  • 102032 Computational intelligence
  • 102033 Data mining
  • 305901 Computer-aided diagnosis and therapy
  • 305905 Medical informatics
  • 202035 Robotics
  • 202037 Signal processing
  • 103029 Statistical physics
  • 106005 Bioinformatics
  • 106007 Biostatistics

JKU Focus areas

  • Digital Transformation

Cite this