Order-Degree Curves for Hypergeometric Creative Telescoping

Shaoshi Chen, Manuel Kauers

Research output: Working paper and reportsPreprint

Abstract

Creative telescoping applied to a bivariate proper hypergeometric term produces linear recurrence operators with polynomial coefficients, called telescopers. We provide bounds for the degrees of the polynomials appearing in these operators. Our bounds are expressed as curves in the (r,d)-plane which assign to every order r a bound on the degree d of the telescopers. These curves are hyperbolas, which reflect the phenomenon that higher order telescopers tend to have lower degree, and vice versa.
Original languageEnglish
Place of PublicationHagenberg
PublisherRISC JKU
Number of pages8
DOIs
Publication statusPublished - 2012

Publication series

NamearXiv.org

Fields of science

  • 101001 Algebra
  • 101002 Analysis
  • 101 Mathematics
  • 102 Computer Sciences
  • 102011 Formal languages
  • 101009 Geometry
  • 101013 Mathematical logic
  • 101020 Technical mathematics
  • 101025 Number theory
  • 101012 Combinatorics
  • 101005 Computer algebra
  • 101006 Differential geometry
  • 101003 Applied geometry
  • 102025 Distributed systems

JKU Focus areas

  • Computation in Informatics and Mathematics

Cite this