Abstract
The paper provides reliability analysis of a cold double redundant renewable system assuming that both life-time and repair time distributions are arbitrary. The proposed approach is based on the theory of decomposable semi-regenerative processes. We derive the Laplace–Stieltjes transform of two main reliability measures like the distribution of the time between failures and the time to the first failure. The transforms are used to calculate corresponding mean times. It is further derived in closed form the time-dependent and time stationary state probabilities in terms of the Laplace transforms. Numerical results illustrate the effect of the type of distributions as well as their parameters on the derived reliability and probabilistic measures.
Original language | English |
---|---|
Article number | 278 |
Number of pages | 18 |
Journal | Mathematics |
Volume | 8 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2020 |
Fields of science
- 101 Mathematics
- 101014 Numerical mathematics
- 101018 Statistics
- 101019 Stochastics
- 101024 Probability theory
JKU Focus areas
- Digital Transformation