On-line Evolving Image Classifiers and Their Application to Surface Inspection

Edwin Lughofer

Research output: Contribution to journalArticlepeer-review

Abstract

In this paper, we present image classifiers which are able to adapt and evolve themselves at an on-line machine vision system. These classifiers are initially trained on some pre-labelled training data and further updated based on newly recorded samples, for instance during a production process. The evolution and adaptation mechanism is necessary in order to guarantee a process-save on-line system as usually the pre-labelled data does not cover all possible operating conditions, system states or image classes. It is also recommended for a refinement of the classifiers during the on-line mode in order to boost predictive performance with more loaded samples. We will present two types of on-line evolving image classifiers: The first one is a clustering-based classification approach, which exploits conventional vector quantization, forming an incremental evolving variant around it and extending it to the supervised classification case. The second one is an evolving fuzzy classifier approach which comes with two model architectures, classical single model and a novel multi-model architecture, the later exploiting indicator matrices/vectors for training. The approaches are evaluated in three different on-line surface inspection systems dealing with CD imprint inspection, egg inspection and inspection of metal rotor parts. The evaluation will show the impact of on-line evolved versus 'static' classifiers kept fixed during the whole on-line process.
Original languageEnglish
Pages (from-to)1065-1079
Number of pages15
JournalImage and Vision Computing
Volume28
Issue number7
DOIs
Publication statusPublished - Jul 2010

Fields of science

  • 101 Mathematics
  • 101004 Biomathematics
  • 101027 Dynamical systems
  • 101013 Mathematical logic
  • 101028 Mathematical modelling
  • 101014 Numerical mathematics
  • 101020 Technical mathematics
  • 101024 Probability theory
  • 102001 Artificial intelligence
  • 102003 Image processing
  • 102009 Computer simulation
  • 102019 Machine learning
  • 102023 Supercomputing
  • 202027 Mechatronics
  • 206001 Biomedical engineering
  • 206003 Medical physics
  • 102035 Data science

Cite this