On-Line Audio-to-Lyrics Alignment Based on a Reference Performance

Charles Brazier, Gerhard Widmer

Research output: Chapter in Book/Report/Conference proceedingConference proceedingspeer-review

Abstract

Audio-to-lyrics alignment has become an increasingly active research task in MIR, supported by the emergence of several open-source datasets of audio recordings with word-level lyrics annotations. However, there are still a number of open problems, such as a lack of robustness in the face of severe duration mismatches between audio and lyrics representation; a certain degree of language-specificity caused by acoustic differences across languages; and the fact that most successful methods in the field are not suited to work in real-time. Real-time lyrics alignment (tracking) would have many useful applications, such as fully automated subtitle display in live concerts and opera. In this work, we describe the first real-time-capable audio-to-lyrics alignment pipeline that is able to robustly track the lyrics of different languages, without additional language information. The proposed model predicts, for each audio frame, a probability vector over (European) phoneme classes, using a very small temporal context, and aligns this vector with a phoneme posteriogram matrix computed beforehand from another recording of the same work, which serves as a reference and a proxy to the written-out lyrics. We evaluate our system's tracking accuracy on the challenging genre of classical opera. Finally, robustness to out-of-training languages is demonstrated in an experiment on Jingju (Beijing opera).
Original languageEnglish
Title of host publicationProceedings of the 22nd International Society for Music Information Retrieval (ISMIR) Conference
Number of pages8
Publication statusPublished - Nov 2021

Fields of science

  • 202002 Audiovisual media
  • 102 Computer Sciences
  • 102001 Artificial intelligence
  • 102003 Image processing
  • 102015 Information systems

JKU Focus areas

  • Digital Transformation

Cite this