Abstract
The blood glucose metabolism of a diabetic is a complex nonlinear process closely linked to a number of internal factors which are not easily accessible to measurements.
Based on accessible information —such as continuous glucose
monitoring (CGM) measurements and information on the amount of ingested carbohydrates and of delivered insulin— the system appears highly stochastic and the quantity of main
interest, the blood glucose concentration, is very difficult to model and to predict. In this paper, we approximate the glucoseinsulin system by a linear model with physiological transformed input signals. Considering the time varying characteristics of this system, a normalized least mean squares (NLMS) algorithm with an optimized variable gain is utilized for the recursive estimation of the model coefficients, and its resulting mean square error (MSE) convergence property is investigated. Our experimental results (15 Type 1 diabetic patients) were analyzed from a modeling theory, and also from a clinical point of view using Continuous Glucose-Error Grid Analysis (CG-EGA).
Original language | English |
---|---|
Title of host publication | Proceedings of the CDC 2010 |
Number of pages | 6 |
Publication status | Published - Dec 2010 |
Fields of science
- 203 Mechanical Engineering
- 202034 Control engineering
- 202012 Electrical measurement technology
- 206 Medical Engineering
- 202027 Mechatronics
- 202003 Automation
- 203027 Internal combustion engines
- 207109 Pollutant emission
JKU Focus areas
- Mechatronics and Information Processing