TY - GEN
T1 - Nonlinear Control of a Gantry Crane
AU - Kolar, Bernd
AU - Schlacher, Kurt
PY - 2013
Y1 - 2013
N2 - This paper treats the nonlinear control of a laboratory model of a gantry crane, where a trolley can be moved on a rail and the load is fixed at the end of a rope of variable length. The system is differentially flat, and the coordinates of the load, which also are the variables to be controlled, are a flat output. This fact allows us to determine a feedforward control law in a straightforward manner. Because of friction, the results achievable by a pure feedforward law are, as expected, not satisfying. This does not apply to the "pendulum subsystem", with the position of the trolley and the length of the rope as input, since it is almost free of friction. Therefore, a feedforward control for the "pendulum subsystem" is designed such that it shows an excellent tracking behavior. Finally, cascaded control is used for the guidance of the overall system.
AB - This paper treats the nonlinear control of a laboratory model of a gantry crane, where a trolley can be moved on a rail and the load is fixed at the end of a rope of variable length. The system is differentially flat, and the coordinates of the load, which also are the variables to be controlled, are a flat output. This fact allows us to determine a feedforward control law in a straightforward manner. Because of friction, the results achievable by a pure feedforward law are, as expected, not satisfying. This does not apply to the "pendulum subsystem", with the position of the trolley and the length of the rope as input, since it is almost free of friction. Therefore, a feedforward control for the "pendulum subsystem" is designed such that it shows an excellent tracking behavior. Finally, cascaded control is used for the guidance of the overall system.
M3 - Conference proceedings
SN - 978-3-642-53861-2
VL - 8112
T3 - Lecture Notes in Computer Science (LNCS)
BT - Computer Aided Systems Theory - EUROCAST 2013
PB - Springer
ER -