Abstract
Bousquet-Melou and Petkovsek investigated the generating functions of multivariate linear recurrences with constant coefficients. We will give a reinterpretation of their results by means of division theorems for formal power series, which clarifies the structural background and provides short, conceptual proofs. In addition, extending the division to the context of differential operators, the case of recurrences with polynomial coefficients can be treated in an analogous way.
Original language | English |
---|---|
Number of pages | 8 |
Journal | Discrete Mathematics |
Volume | 312 |
Issue number | 24 |
DOIs | |
Publication status | Published - 2012 |
Fields of science
- 101001 Algebra
- 101002 Analysis
- 101 Mathematics
- 102 Computer Sciences
- 102011 Formal languages
- 101009 Geometry
- 101013 Mathematical logic
- 101020 Technical mathematics
- 101025 Number theory
- 101012 Combinatorics
- 101005 Computer algebra
- 101006 Differential geometry
- 101003 Applied geometry
- 102025 Distributed systems
JKU Focus areas
- Computation in Informatics and Mathematics