Modeling Popularity and Temporal Drift of Music Genre Preferences

Elisabeth Lex, D. Kowald, Markus Schedl

Research output: Contribution to journalArticlepeer-review

Abstract

In this paper, we address the problem of modeling and predicting the music genre preferences of users. We introduce a novel user modeling approach, BLLu, which takes into account the popularity of music genres as well as temporal drifts of user listening behavior. To model these two factors, BLLu adopts a psychological model that describes how humans access information in their memory. We evaluate our approach on a standard dataset of Last.fm listening histories, which contains fine-grained music genre information. To investigate performance for different types of users, we assign each user a mainstreaminess value that corresponds to the distance between the user’s music genre preferences and the music genre preferences of the (Last.fm) mainstream. We adopt BLLu to model the listening habits and to predict the music genre preferences of three user groups: listeners of (i) niche, low-mainstream music, (ii) mainstream music, and (iii) medium-mainstream music that lies in-between. Our results show that BLLu provides the highest accuracy for predicting music genre preferences, compared to five baselines: (i) group-based modeling, (ii) user-based collaborative filtering, (iii) item-based collaborative filtering, (iv) frequency-based modeling, and (v) recency-based modeling. Besides, we achieve the most substantial accuracy improvements for the low-mainstream group. We believe that our findings provide valuable insights into the design of music recommender systems.
Original languageEnglish
Number of pages10
JournalTransactions of the International Society of Music Information Retrieval
DOIs
Publication statusPublished - 2020

Fields of science

  • 202002 Audiovisual media
  • 102 Computer Sciences
  • 102001 Artificial intelligence
  • 102003 Image processing
  • 102015 Information systems

JKU Focus areas

  • Digital Transformation

Cite this