Measuring Bias in Search Results Through Retrieval List Comparison

Linda Ratz, Markus Schedl, Simone Kopeinik, Navid Rekabsaz

Research output: Chapter in Book/Report/Conference proceedingConference proceedingspeer-review

Abstract

Many IR systems project harmful societal biases, including gender bias, in their retrieved contents. Uncovering and addressing such biases requires grounded bias measurement principles. However, defining reliable bias metrics for search results is challenging, particularly due to the difficulties in capturing gender-related tendencies in the retrieved documents. In this work, we propose a new framework for search result bias measurement. Within this framework, we first revisit the current metrics for representative search result bias (RepSRB) that are based on the occurrence of gender-specific language in the search results. Addressing their limitations, we additionally propose a metric for comparative search result bias (ComSRB) measurement and integrate it into our framework. ComSRB defines bias as the skew in the set of retrieved documents in response to a non-gendered query toward those for male/female-specific variations of the same query. We evaluate ComSRB against RepSRB on a recent collection of bias-sensitive topics and documents from the MS MARCO collection, using pre-trained bi-encoder and cross-encoder IR models. Our analyses show that, while existing metrics are highly sensitive to the wordings and linguistic formulations, the proposed ComSRB metric mitigates this issue by focusing on the deviations of a retrieval list from its explicitly biased variants, avoiding the need for sub-optimal content analysis processes.
Original languageEnglish
Title of host publicationProceedings of the 46th European Conference on Information Retrieval (ECIR 2024)
Number of pages14
Volume14612
Publication statusPublished - 2024

Publication series

NameLecture Notes in Computer Science

Fields of science

  • 202002 Audiovisual media
  • 102 Computer Sciences
  • 102001 Artificial intelligence
  • 102003 Image processing
  • 102015 Information systems
  • 101019 Stochastics
  • 103029 Statistical physics
  • 101018 Statistics
  • 101017 Game theory
  • 202017 Embedded systems
  • 101016 Optimisation
  • 101015 Operations research
  • 101014 Numerical mathematics
  • 101029 Mathematical statistics
  • 101028 Mathematical modelling
  • 101026 Time series analysis
  • 101024 Probability theory
  • 102032 Computational intelligence
  • 102004 Bioinformatics
  • 102013 Human-computer interaction
  • 101027 Dynamical systems
  • 305907 Medical statistics
  • 101004 Biomathematics
  • 305905 Medical informatics
  • 101031 Approximation theory
  • 102033 Data mining
  • 305901 Computer-aided diagnosis and therapy
  • 102019 Machine learning
  • 106007 Biostatistics
  • 102018 Artificial neural networks
  • 106005 Bioinformatics
  • 202037 Signal processing
  • 202036 Sensor systems
  • 202035 Robotics

JKU Focus areas

  • Digital Transformation

Cite this