MacMahon’s Partition Analysis XV: Parity

George E. Andrews, Peter Paule

Research output: Working paper and reportsPreprint

Abstract

We apply the methods of partition analysis to partitions in which the parity of parts plays a role. We begin with an in-depth treatment of the generating function for the partitions from the first G ̈ollnitz-Gordon identity. We then deduce a Schmidt-type theorem related to the false theta functions. We also consider: (1) position parity, (2) partitions with distinct even parts, (3) partitions with distinct odd parts. One of the corollaries of these last considerations is a new interpretation of Hei-Chi Chan’s cubic partitions. A second part of our article is devoted to the algorithmic derivation of identities and arithmetic congruences related to the generating functions considered in part one, including cubic partitions. To this end, Smoot’s implementation of Radu’s Ramanujan-Kolberg algorithm is used. Finally, we give a short description which explains how to use the Omega package to derive special instances of the results of part one.
Original languageEnglish
Place of PublicationHagenberg, Linz
PublisherRISC, JKU
Number of pages31
Publication statusPublished - Jan 2023

Publication series

NameRISC Report Series
No.23-14
ISSN (Print)2791-4267

Fields of science

  • 101 Mathematics
  • 101001 Algebra
  • 101005 Computer algebra
  • 101009 Geometry
  • 101012 Combinatorics
  • 101013 Mathematical logic
  • 101020 Technical mathematics

JKU Focus areas

  • Digital Transformation

Cite this