Projects per year
Abstract
Context: The software development industry is rapidly adopting machine learning for transitioning modern day software systems towards highly intelligent and self-learning systems. However, the full potential of machine learning for improving the software engineering life cycle itself is yet to be discovered, i.e., up to what extent machine learning can help reducing the effort/complexity of software engineering and improving the quality of resulting software systems. To date, no comprehensive study exists that explores the current state-of-the-art on the adoption of machine learning across software engineering life cycle stages. Objective: This article addresses the aforementioned problem and aims to present a state-of-the-art on the growing number of uses of machine learning in software engineering. Method: We conduct a systematic mapping study on applications of machine learning to software engineering following the standard guidelines and principles of empirical software engineering. Results: This study introduces a machine learning for software engineering (MLSE) taxonomy classifying the state-of-the-art machine learning techniques according to their applicability to various software engineering life cycle stages. Overall, 227 articles were rigorously selected and analyzed as a result of this study. Conclusion: From the selected articles, we explore a variety of aspects that should be helpful to academics and practitioners alike in understanding the potential of adopting machine learning techniques during software engineering projects.
Original language | English |
---|---|
Number of pages | 20 |
DOIs | |
Publication status | Published - May 2020 |
Publication series
Name | CoRR - Computing Research Repository |
---|---|
Volume | abs/2005.13299 |
Fields of science
- 102 Computer Sciences
- 102022 Software development
JKU Focus areas
- Digital Transformation
Projects
- 2 Finished
-
LIT Factory The smart research factory in upper austria
Löw-Baselli, B. (Researcher), Major, Z. (Researcher) & Steinbichler, G. (PI)
01.01.2018 → 30.04.2020
Project: Funded research › FFG - Austrian Research Promotion Agency
-
COMET K1-Zentrum Software Competence Center Hagenberg (SCCH)
Feichtenschlager, P. (Researcher), Heumader, P. (Researcher) & Miesenberger, K. (PI)
01.01.2015 → 31.12.2018
Project: Funded research › FFG - Austrian Research Promotion Agency