Abstract
In recent years, rainfall–runoff models based on machine learning techniques, particularly Long Short-Term Memory (LSTM) networks, have proven highly successful. They outperform conceptual hydrologic models, predict multiple basins in a single model, and allow for predictions in ungauged basins (Kratzert et al. 2018, Kratzert et al. 2019, Kratzert et al. 2019a). Yet, there remain open challenges toward operational use of such models.
One major challenge is the fact that most research so far has focused on machine learning for daily predictions. While daily predictions are highly relevant for medium- to long-range forecasts, they are too coarse to capture characteristics such as the precise timing of peaks in short-range forecasts. Hence, streamflow predictions at sub-daily time scales are a key ingredient for operationally usable machine learning models.
To this end, we demonstrate a novel approach that can generate predictions at arbitrary temporal frequencies in a single LSTM-based model. For instance, a single model can generate hourly, three-hourly, and daily predictions, each up to a different temporal horizon. Moreover, the model can ingest different forcing products (or other input variables) for each time scale, which is important since high-frequency forcings usually have a shorter forecast horizon than lower-frequency forcing products.
To test our proposed model, we train a single LSTM-based model on NLDAS forcings and USGS streamflow data from 516 basins across the contiguous United States, aggregated to time scales between one hour and one day. Preliminary results indicate that this technique outperforms state-of-the-art conceptual hydrologic models and its accuracy does not degrade compared to a daily LSTM, which can only predict daily streamflow.
Original language | English |
---|---|
Title of host publication | Proceedings AGU Fall Meeting 2020 |
Number of pages | 1 |
Publication status | Published - Dec 2020 |
Fields of science
- 305907 Medical statistics
- 202017 Embedded systems
- 202036 Sensor systems
- 101004 Biomathematics
- 101014 Numerical mathematics
- 101015 Operations research
- 101016 Optimisation
- 101017 Game theory
- 101018 Statistics
- 101019 Stochastics
- 101024 Probability theory
- 101026 Time series analysis
- 101027 Dynamical systems
- 101028 Mathematical modelling
- 101029 Mathematical statistics
- 101031 Approximation theory
- 102 Computer Sciences
- 102001 Artificial intelligence
- 102003 Image processing
- 102004 Bioinformatics
- 102013 Human-computer interaction
- 102018 Artificial neural networks
- 102019 Machine learning
- 102032 Computational intelligence
- 102033 Data mining
- 305901 Computer-aided diagnosis and therapy
- 305905 Medical informatics
- 202035 Robotics
- 202037 Signal processing
- 103029 Statistical physics
- 106005 Bioinformatics
- 106007 Biostatistics
JKU Focus areas
- Digital Transformation