Abstract
Recent studies have revealed that immune repertoires contain a substantial fraction of public clones, which may be defined as Ab or TCR clonal sequences shared across individuals. It has remained unclear whether public clones possess predictable sequence features that differentiate them from private clones, which are believed to be generated largely stochastically. This knowledge gap represents a lack of insight into the shaping of immune repertoire diversity. Leveraging a machine learning approach capable of capturing the high-dimensional compositional information of each clonal sequence (defined by CDR3), we detected predictive public clone and private clone–specific immunogenomic differences concentrated in CDR3’s N1–D–N2 region, which allowed the prediction of public and private status with 80% accuracy in humans and mice. Our results unexpectedly demonstrate that public, as well as private, clones possess predictable high-dimensional immunogenomic features. Our support vector machine model could be trained effectively on large published datasets (3 million clonal sequences) and was sufficiently robust for public clone prediction across individuals and studies prepared with different library preparation and high-throughput sequencing protocols. In summary, we have uncovered the existence of high-dimensional immunogenomic rules that shape immune repertoire diversity in a predictable fashion. Our approach may pave the way for the construction of a comprehensive atlas of public mouse and human immune repertoires with potential applications in rational vaccine design and immunotherapeutics.
Original language | English |
---|---|
Pages (from-to) | 2985-2997 |
Number of pages | 13 |
Journal | The Journal of Immunology |
Volume | 199 |
Issue number | 8 |
DOIs | |
Publication status | Published - 2017 |
Fields of science
- 303 Health Sciences
- 304 Medical Biotechnology
- 304003 Genetic engineering
- 305 Other Human Medicine, Health Sciences
- 101004 Biomathematics
- 101018 Statistics
- 102 Computer Sciences
- 102001 Artificial intelligence
- 102004 Bioinformatics
- 102010 Database systems
- 102015 Information systems
- 102019 Machine learning
- 106023 Molecular biology
- 106002 Biochemistry
- 106005 Bioinformatics
- 106007 Biostatistics
- 106041 Structural biology
- 301 Medical-Theoretical Sciences, Pharmacy
- 302 Clinical Medicine
JKU Focus areas
- Computation in Informatics and Mathematics
- Nano-, Bio- and Polymer-Systems: From Structure to Function
- Medical Sciences (in general)
- Health System Research
- Clinical Research on Aging