Applying a machine learning model for decision-making in the real world requires to distinguish what the model knows from what it does not. A critical factor in assessing the knowledge of a model is to quantify its predictive uncertainty. Predictive uncertainty is commonly measured by the entropy of the Bayesian model average (BMA) predictive distribution. Yet, the properness of this current measure of predictive uncertainty was recently questioned. We provide new insights regarding those limitations. Our analyses show that the current measure erroneously assumes that the BMA predictive distribution is equivalent to the predictive distribution of the true model that generated the dataset. Consequently, we introduce a theoretically grounded measure to overcome these limitations. We experimentally verify the benefits of our introduced measure of predictive uncertainty. We find that our introduced measure behaves more reasonably in controlled synthetic tasks. Moreover, our evaluations on ImageNet demonstrate that our introduced measure is advantageous in real-world applications utilizing predictive uncertainty.
Original language | English |
---|
Number of pages | 13 |
---|
Publication status | Published - 2024 |
---|
- 305907 Medical statistics
- 202017 Embedded systems
- 202036 Sensor systems
- 101004 Biomathematics
- 101014 Numerical mathematics
- 101015 Operations research
- 101016 Optimisation
- 101017 Game theory
- 101018 Statistics
- 101019 Stochastics
- 101024 Probability theory
- 101026 Time series analysis
- 101027 Dynamical systems
- 101028 Mathematical modelling
- 101029 Mathematical statistics
- 101031 Approximation theory
- 102 Computer Sciences
- 102001 Artificial intelligence
- 102003 Image processing
- 102004 Bioinformatics
- 102013 Human-computer interaction
- 102018 Artificial neural networks
- 102019 Machine learning
- 102032 Computational intelligence
- 102033 Data mining
- 305901 Computer-aided diagnosis and therapy
- 305905 Medical informatics
- 202035 Robotics
- 202037 Signal processing
- 103029 Statistical physics
- 106005 Bioinformatics
- 106007 Biostatistics