Abstract
Modern compilers and interpreters provide code optimizations during compile and run time, simplifying the development process for the developer and resulting in optimized software. These optimizations are often based on formal proof, or alternatively stochastic optimizations have recovery paths as backup. The Genetic Compiler Optimization Environment (GCE) uses a novel approach, which utilizes genetic improvement to optimize the run-time performance of code with stochastic machine learning techniques.
In this paper, we propose an architecture to integrate GCE, which directly integrates with low-level interpreters and compilers, with HeuristicLab, a high-level optimization framework that features a wide range of heuristic and evolutionary algorithms, and a graphical user interface to control and monitor the machine learning process. The defined architecture supports parallel and distributed execution to compensate long run times of the machine learning process caused by abstract syntax tree (AST) transformations. The architecture does not depend on specific operating systems, programming languages, compilers or interpreters.
Original language | English |
---|---|
Title of host publication | Proceedings of the 2020 Genetic and Evolutionary Computation Conference Companion |
Publisher | ACM Digital Library |
Pages | 1580-1588 |
Number of pages | 9 |
DOIs | |
Publication status | Published - Jul 2020 |
Fields of science
- 102 Computer Sciences
- 102009 Computer simulation
- 102011 Formal languages
- 102013 Human-computer interaction
- 102022 Software development
- 102024 Usability research
- 102029 Practical computer science
JKU Focus areas
- Digital Transformation