Incremental Rule Splitting in Generalized Evolving Fuzzy Regression Models

Edwin Lughofer, Mahardhika Pratama, Igor Skrjanc

Research output: Chapter in Book/Report/Conference proceedingConference proceedingspeer-review

Abstract

We propose an incremental rule splitting concept for generalized fuzzy rules in evolving fuzzy regression models in order to properly react on gradual drifts and to compensate inappropriate settings of rule evolution parameters; both occurrences may lead to oversized rules with untypically large local errors, which also usually affects the global model error. The generalized rules are directly defined in the multi-dimensional feature space through a kernel function, and thus allowing any rotated orientation of their shapes. Our splitting condition is based 1.) on the local error of rules measured in terms of a weighted contribution to the whole model error and 2.) on the size of the rules measured in terms of its volume. Thereby, we use the concept of statistical process control for automatic thresholding, in order to omit two extra parameters. The splitting technique relies on the eigendecompisition of the rule covariance matrix by adequately manipulating the largest eigenvector and eigenvalues in order to retrieve the new centers and contours of the two split rules. Thus, splitting is performed along the main principal component direction of a rule. The splitting concepts are integrated in the generalized smart evolving learning engine (Gen-Smart-EFS) and successfully tested on two realworld application scenarios, engine test benches and rolling mills, the latter including a real-occurring gradual drift (whose position in the data is known). Results show clearly improved error trend lines over time when splitting is applied: reduction of the error by about one third (rolling mills) and one half (engine test benches). In case of rolling mills, three rule splits right after the gradual drift starts were essential for this significant improvement.
Original languageEnglish
Title of host publicationProc. of the IEEE Conference on Evolving and Adaptive Intelligent Systems 2017
Place of PublicationLjubljana, Slovenia
PublisherIEEE Press
Pages1-8
Number of pages8
Publication statusPublished - May 2017

Publication series

NameIEEE EAIS

Fields of science

  • 101 Mathematics
  • 101013 Mathematical logic
  • 101024 Probability theory
  • 102001 Artificial intelligence
  • 102003 Image processing
  • 102019 Machine learning
  • 603109 Logic
  • 202027 Mechatronics

JKU Focus areas

  • Computation in Informatics and Mathematics
  • Mechatronics and Information Processing
  • Nano-, Bio- and Polymer-Systems: From Structure to Function
  • mvControl

    Pollak, R. (Researcher), Richter, R. (Researcher) & Lughofer, E. (PI)

    01.10.201530.09.2018

    Project: Funded researchFFG - Austrian Research Promotion Agency

Cite this