Incremental lines in human acellular tooth cementum - New insights by SEM analysis

Christopher Hinrichs, Nicole Nicklisch, Cezarina Cela Mardare, Bernhard Orechovski, Achim Walter Hassel, Christoph Kleber, Kurt W. Alt

Research output: Contribution to journalArticlepeer-review

Abstract

Background Tooth cementum covers the surface of the root dentine and is produced and laid down in thin layers continuously throughout life. Functionally, different types of tooth cementum can be distinguished, which can be roughly divided into acellular (primary cementum) and cellular (secondary cementum) forms. One main type is acellular extrinsic fibre cementum (AEFC), which covers the cervical and middle third of the root. Light microscopic examinations of transverse sections of AEFC show lamellar patterns of alternating light and dark lines called growth or incremental lines. Following mammalian research, a seasonal rhythm of incremental line formation is also assumed in humans. Previous attempts at visualising incremental lines in the AEFC by scanning electron microscopy (SEM) were not particularly successful. The aim of the present study was to detect incremental lines in the AEFC and to analyse their underlying structure by SEM. Methods For this purpose, non-embedded and resin-embedded transverse and longitudinal sections of three single-rooted teeth obtained from different patients were investigated. The thin sections were not pre-treated (e.g. by etching, grinding or coating). Results Lamellar structures, which could be identified as incremental lines, were detectable in both transverse and longitudinal sections, with transverse orientation in the cross-section and longitudinal orientation in the longitudinal section. The lamellar pattern was created by broad fibre-rich layers alternating with narrow fibre-poor layers. The orientation of the collagen fibres changed from layer to layer from transverse to radial direction. The visibility of the layered structure discovered varied significantly. Conclusions The study demonstrate that it is possible, in principle, to detect incremental lines in AEFC and to identify their basic structure using SEM. Our results suggest that the density and orientation of the fibres play an essential role in the formation of incremental lines. Functional aspects seem to be of particular importance.
Original languageEnglish
Article number151933
Number of pages6
JournalAnnals of Anatomy
Volume243
DOIs
Publication statusPublished - 2022

Fields of science

  • 204 Chemical Process Engineering
  • 205016 Materials testing
  • 210006 Nanotechnology
  • 104014 Surface chemistry
  • 105113 Crystallography
  • 105116 Mineralogy
  • 204001 Inorganic chemical technology
  • 211104 Metallurgy
  • 104005 Electrochemistry
  • 104006 Solid state chemistry
  • 104017 Physical chemistry
  • 503013 Subject didactics of natural sciences

JKU Focus areas

  • Sustainable Development: Responsible Technologies and Management

Cite this