In silico proof of principle of machine learning-based antibody design at unconstrained scale

Rahmad Akbar, Philippe A. Robert, Cedric R. Weber, Michael Widrich, Robert Frank, Milena Pavlovic, Lonneke Scheffer, Maria Chernigovskaya, Igor Snapkov, Andrei Slabodkin, Brij Bhushan Mehta, Enkelejda Miho, Fridtjof Lund-Johansen, Jan Terje Andersen, Sepp Hochreiter, Ingrid Hobæk Haff, Günter Klambauer, Geir Kjetil Sandve, Victor Greiff

Research output: Working paper and reportsPreprint

Abstract

Generative machine learning (ML) has been postulated to be a major driver in the computational design of antigen-specific monoclonal antibodies (mAb). However, efforts to confirm this hypothesis have been hindered by the infeasibility of testing arbitrarily large numbers of antibody sequences for their most critical design parameters: paratope, epitope, affinity, and developability. To address this challenge, we leveraged a lattice-based antibody-antigen binding simulation framework, which incorporates a wide range of physiological antibody binding parameters. The simulation framework enables both the computation of antibody-antigen 3D-structures as well as functions as an oracle for unrestricted prospective evaluation of the antigen specificity of ML-generated antibody sequences. We found that a deep generative model, trained exclusively on antibody sequence (1D) data can be used to design native-like conformational (3D) epitope-specific antibodies, matching or exceeding the training dataset in affinity and developability variety. Furthermore, we show that transfer learning enables the generation of high-affinity antibody sequences from low-N training data. Finally, we validated that the antibody design insight gained from simulated antibody-antigen binding data is applicable to experimental real-world data. Our work establishes a priori feasibility and the theoretical foundation of high-throughput ML-based mAb design.
Original languageEnglish
Number of pages36
DOIs
Publication statusPublished - 2021

Publication series

NamebioRxiv
ISSN (Print)2692-8205

Fields of science

  • 305907 Medical statistics
  • 202017 Embedded systems
  • 202036 Sensor systems
  • 101004 Biomathematics
  • 101014 Numerical mathematics
  • 101015 Operations research
  • 101016 Optimisation
  • 101017 Game theory
  • 101018 Statistics
  • 101019 Stochastics
  • 101024 Probability theory
  • 101026 Time series analysis
  • 101027 Dynamical systems
  • 101028 Mathematical modelling
  • 101029 Mathematical statistics
  • 101031 Approximation theory
  • 102 Computer Sciences
  • 102001 Artificial intelligence
  • 102003 Image processing
  • 102004 Bioinformatics
  • 102013 Human-computer interaction
  • 102018 Artificial neural networks
  • 102019 Machine learning
  • 102032 Computational intelligence
  • 102033 Data mining
  • 305901 Computer-aided diagnosis and therapy
  • 305905 Medical informatics
  • 202035 Robotics
  • 202037 Signal processing
  • 103029 Statistical physics
  • 106005 Bioinformatics
  • 106007 Biostatistics

JKU Focus areas

  • Digital Transformation

Cite this