Projects per year
Abstract
Optimizing compilers rely on many hand-crafted heuristics to guide the optimization process. However, the interactions between different optimizations makes their design a difficult task. We propose using machine learning models to either replace such heuristics or to support their development process, for example, by identifying important code features. Especially in static compilation, machine learning has been shown to outperform hand-crafted heuristics. We applied our approach in a state-of-the-art dynamic compiler, the GraalVM compiler. Our models predict an unroll factor for vectorized loops for which the GraalVM compiler developers have not been able to design satisfactory heuristics. Thereby, we identified features to describe vectorized loops and empirically evaluated the impact of different training data, features or model parameters on the accuracy of the learned models. When deployed in the GraalVM dynamic compiler, our models produce significant speedups of 8-11%, on average. Furthermore, large speedups unveiled a performance bug in the compiler which was fixed after our report. Our work shows that machine learning can be used to improve a dynamic compiler directly by replacing existing vectorization heuristics or indirectly by helping compiler developers to design better hand-crafted heuristics.
Original language | English |
---|---|
Title of host publication | VMIL 2022: Proceedings of the 14th ACM SIGPLAN International Workshop on Virtual Machines and Intermediate Languages |
Publisher | ACM Digital Library |
Pages | 36-47 |
Number of pages | 12 |
DOIs | |
Publication status | Published - 2022 |
Fields of science
- 102 Computer Sciences
- 102009 Computer simulation
- 102011 Formal languages
- 102013 Human-computer interaction
- 102022 Software development
- 102024 Usability research
- 102029 Practical computer science
JKU Focus areas
- Digital Transformation
Projects
- 1 Active
-
Java VM Compiler Performance (Oracle)
Mössenböck, H. (PI)
01.01.2001 → 31.05.2025
Project: Contract research › Industry project