Abstract
Fully automatic opera tracking is challenging because of the acoustic complexity of the genre, combining musical and linguistic information (singing, speech) in complex ways. In this paper, we propose a new pipeline for complete opera tracking. The pipeline is based on two trackers. A music tracker that has proven to be effective at tracking orchestral parts, will lead the tracking process. In addition, a lyrics tracker, that has recently been shown to reliably track the lyrics of opera songs, will correct the music tracker when tracking parts that have a text dominance over the music. We will demonstrate the efficiency of this method on the opera Don Giovanni, showing that this technique helps improving accuracy and robustness of a complete opera tracker.
Original language | English |
---|---|
Title of host publication | Proceedings of the 2nd Workshop on NLP for Music and Audio (NLP4MusA) |
Number of pages | 5 |
Publication status | Published - 2021 |
Fields of science
- 202002 Audiovisual media
- 102 Computer Sciences
- 102001 Artificial intelligence
- 102003 Image processing
- 102015 Information systems
JKU Focus areas
- Digital Transformation