Impact of Femtosecond Laser Treatment Accompanied with Anodization of Titanium Alloy on Fibroblast Cell Growth

A. Shaukat Lone, Martina Muck, Peter Fosodeder, Cezarina Cela Mardare, C. Florian, Agnes Weth, Jörg Krüger, Clemens Steinwender, Werner Baumgartner, Jörn Bonse, Johannes Heitz, Achim Walter Hassel

Research output: Contribution to journalArticlepeer-review

Abstract

Herein, Ti6Al4V alloy is surface modified by femtosecond laser ablation. The microstructure image obtained by secondary electron microscopy reveals a combination of micrometer spikes or cones superimposed by nanoripples (laser‐induced periodic surface structures). To make the surface hydrophilic, anodization is performed resulting in further smoothness of microstructure and a final thickness of 35 ± 4 nm is estimated for oxide produced after anodization at 10 V (scan rate = 0.1 V s−1) versus standard hydrogen electrode. The obtained electrochemically active surface area (ECSA) is approximately 8 times larger compared with flat mirror polished Ti6Al4V surface. Combined chemical analysis by Pourbaix diagram and X‐ray photoelectron spectroscopy (XPS) analyses reveal that titanium and aluminum are passivating into TiO2 and Al2O3, but the dissolution of aluminum in the form of solvated ion is inevitable. Finally, cell seeding experiments on anodized and laser‐treated titanium alloy samples show that the growth of murine fibroblast cells is significantly suppressed due to unique surface texture of the laser‐treated and anodized titanium alloy sample.
Original languageEnglish
Article number1900838
Number of pages9
JournalPhysica Status Solidi A: Applications and Materials Science
Issue number217
DOIs
Publication statusPublished - Feb 2020

Fields of science

  • 305 Other Human Medicine, Health Sciences
  • 206 Medical Engineering
  • 106 Biology
  • 211 Other Technical Sciences

Cite this