Hydrogen-Bonded Organic Semiconductor Micro- And Nanocrystals: From Colloidal Syntheses to (Opto-)Electronic Devices

Mykhailo Sytnyk, Eric Daniel Glowacki, Sergii Yakunin, Gundula Voss, Wolfgang Schöfberger, Dominik Kriegner, Julian Stangl, Rinaldo Trotta, Claudia Gollner, Sajjad Tollabimazraehno, Giuseppe Romanazzi, Zeynep Bozkurt, Marek Havlicek, Serdar Niyazi Sariciftci, Wolfgang Johann Heiß

Research output: Contribution to journalArticlepeer-review

Abstract

Organic pigments such as indigos, quinacridones, and phthalocyanines are widely produced industrially as colorants for everyday products as various as cosmetics and printing inks. Herein we introduce a general procedure to transform commercially available insoluble microcrystalline pigment powders into colloidal solutions of variously sized and shaped semiconductor micro- and nanocrystals. The synthesis is based on the transformation of the pigments into soluble dyes by introducing transient protecting groups on the secondary Amine moieties, followed by controlled deprotection in solution. Three deprotection methods are demonstrated: thermal cleavage, acid-catalyzed deprotection, and amine-induced deprotection. During these processes, ligands are introduced to afford colloidal stability and to provide dedicated surface functionality and for size and shape control. The resulting micro- and nanocrystals exhibit a wide range of optical absorption and photoluminescence over spectral regions from the visible to the nearinfrared. Due to excellent colloidal solubility offered by the ligands, the achieved organic nanocrystals are suitable for solution processing of (opto)electronic devices. As examples, phthalocyanine anowire transistors as well as quinacridone nanocrystal photodetectors, with photoresponsivity values by far outperforming those of vacuum deposited reference samples, are demonstrated. The high responsivity is enabled by photoinduced charge transfer between the nanocrystals and the directly attached electron-accepting vitamin B2 ligands. The semiconducting nanocrystals described here offer a cheap, nontoxic, and environmentally friendly alternative to inorganic nanocrystals as well as a new paradigm for obtaining organic semiconductor materials from commercial colorants.
Original languageEnglish
Pages (from-to)16522-16532
Number of pages11
JournalJournal of the American Chemical Society
Issue number136
DOIs
Publication statusPublished - 2014

Fields of science

  • 103011 Semiconductor physics
  • 104 Chemistry
  • 104016 Photochemistry
  • 103040 Photonics
  • 104005 Electrochemistry
  • 104017 Physical chemistry

JKU Focus areas

  • Engineering and Natural Sciences (in general)

Cite this