TY - JOUR
T1 - Hydrogen-Bonded Organic Semiconductor Micro- And Nanocrystals: From Colloidal Syntheses to (Opto-)Electronic Devices
AU - Sytnyk, Mykhailo
AU - Glowacki, Eric Daniel
AU - Yakunin, Sergii
AU - Voss, Gundula
AU - Schöfberger, Wolfgang
AU - Kriegner, Dominik
AU - Stangl, Julian
AU - Trotta, Rinaldo
AU - Gollner, Claudia
AU - Tollabimazraehno, Sajjad
AU - Romanazzi, Giuseppe
AU - Bozkurt, Zeynep
AU - Havlicek, Marek
AU - Sariciftci, Serdar Niyazi
AU - Heiß, Wolfgang Johann
PY - 2014
Y1 - 2014
N2 - Organic pigments such as indigos, quinacridones, and phthalocyanines are widely produced industrially as colorants for everyday products as various as cosmetics and printing inks. Herein we introduce a general procedure to transform commercially available insoluble microcrystalline pigment powders
into colloidal solutions of variously sized and shaped semiconductor micro- and nanocrystals. The synthesis is based on the transformation of the pigments into soluble dyes by introducing transient protecting groups on the secondary Amine moieties, followed by controlled deprotection in solution. Three deprotection methods are demonstrated: thermal cleavage, acid-catalyzed deprotection, and amine-induced deprotection. During these processes, ligands are introduced to afford colloidal stability and to provide dedicated surface functionality and for size and shape control. The resulting micro- and nanocrystals exhibit a wide range of optical absorption and photoluminescence over spectral regions from the visible to the nearinfrared. Due to excellent colloidal solubility offered by the ligands, the achieved organic nanocrystals are suitable for solution
processing of (opto)electronic devices. As examples, phthalocyanine anowire transistors as well as quinacridone nanocrystal photodetectors, with photoresponsivity values by far outperforming those of vacuum deposited reference samples, are demonstrated. The high responsivity is enabled by photoinduced charge transfer between the nanocrystals and the directly
attached electron-accepting vitamin B2 ligands. The semiconducting nanocrystals described here offer a cheap, nontoxic, and environmentally friendly alternative to inorganic nanocrystals as well as a new paradigm for obtaining organic semiconductor materials from commercial colorants.
AB - Organic pigments such as indigos, quinacridones, and phthalocyanines are widely produced industrially as colorants for everyday products as various as cosmetics and printing inks. Herein we introduce a general procedure to transform commercially available insoluble microcrystalline pigment powders
into colloidal solutions of variously sized and shaped semiconductor micro- and nanocrystals. The synthesis is based on the transformation of the pigments into soluble dyes by introducing transient protecting groups on the secondary Amine moieties, followed by controlled deprotection in solution. Three deprotection methods are demonstrated: thermal cleavage, acid-catalyzed deprotection, and amine-induced deprotection. During these processes, ligands are introduced to afford colloidal stability and to provide dedicated surface functionality and for size and shape control. The resulting micro- and nanocrystals exhibit a wide range of optical absorption and photoluminescence over spectral regions from the visible to the nearinfrared. Due to excellent colloidal solubility offered by the ligands, the achieved organic nanocrystals are suitable for solution
processing of (opto)electronic devices. As examples, phthalocyanine anowire transistors as well as quinacridone nanocrystal photodetectors, with photoresponsivity values by far outperforming those of vacuum deposited reference samples, are demonstrated. The high responsivity is enabled by photoinduced charge transfer between the nanocrystals and the directly
attached electron-accepting vitamin B2 ligands. The semiconducting nanocrystals described here offer a cheap, nontoxic, and environmentally friendly alternative to inorganic nanocrystals as well as a new paradigm for obtaining organic semiconductor materials from commercial colorants.
UR - http://www.lios.at
U2 - 10.1021/ja5073965
DO - 10.1021/ja5073965
M3 - Article
SN - 0002-7863
SP - 16522
EP - 16532
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 136
ER -