FS-FOIL: An Inductive Learning Method for Extracting Interpretable Fuzzy Descriptions

Ulrich Bodenhofer, Mario Drobics, Erich Klement

Research output: Contribution to journalArticlepeer-review

Abstract

This paper is concerned with FS-FOIL - an extension of Quinlan's First-Order Inductive Learning Method (FOIL). In contrast to the classical FOIL algorithm, FS-FOIL uses fuzzy predicates and, thereby, allows to deal not only with categorical variables, but also with numerical ones, without the need to draw sharp boundaries. This method is described in full detail along with discussions how it can be applied in different traditional application scenarios - classification, fuzzy modeling, and clustering. We provide examples of all three types of applications in order to illustrate the efficiency, robustness, and wide applicability of the FS-FOIL method.
Original languageEnglish
Pages (from-to)131-152
Number of pages22
JournalInternational Journal of Approximate Reasoning
Volume32
Issue number2-3
Publication statusPublished - Feb 2003

Fields of science

  • 101 Mathematics
  • 101004 Biomathematics
  • 101027 Dynamical systems
  • 101013 Mathematical logic
  • 101028 Mathematical modelling
  • 101014 Numerical mathematics
  • 101020 Technical mathematics
  • 101024 Probability theory
  • 102001 Artificial intelligence
  • 102003 Image processing
  • 102009 Computer simulation
  • 102019 Machine learning
  • 102023 Supercomputing
  • 202027 Mechatronics
  • 206001 Biomedical engineering
  • 206003 Medical physics
  • 102035 Data science

Cite this