Abstract
Research in intelligent music processing is experiencing an enormous boost these days due
to the emergence of the new application and research field of Music Information Retrieval
(MIR). The rapid growth of digital music collections and the concomitant shift of the music
market towards digital music distribution urgently call for intelligent computational support
in the automated handling of large amounts of digital music. Ideas for a large variety of
content-based music services are currently being developed in music industry and in the
research community. They range from content-based music search engines to automatic music
recommendation services, from intuitive interfaces on portable music players to methods
for the automatic structuring and visualisation of large digital music collections, and from
personalised radio stations to tools that permit the listener to actively modify and `play with'
the music as it is being played.
What all of these content-based services have in common is that they require the computer
to be able to `make sense of' and `understand' the actual content of the music, in the sense
of being able to recognise and extract musically, perceptually and contextually meaningful
(`semantic') patterns from recordings, and to associate descriptors with the music that make
sense to human listeners.
Original language | English |
---|---|
Title of host publication | Sound to Sense: Sense to Sound: A State-of-the-Art in Sound and Music Computing. |
Editors | P. Polotti and D. Rocchesso |
Number of pages | 28 |
Publication status | Published - 2007 |
Fields of science
- 102 Computer Sciences
- 102001 Artificial intelligence
- 102003 Image processing
- 102015 Information systems
- 202002 Audiovisual media