Experiments with Automatic Proofs in Elementary Analysis

Research output: Working paper and reportsPreprint

Abstract

Combining methods from satisfiability checking with methods from symbolic computation promises to solve challenging problems in various areas of theory and application. We look at the basically equivalent problem of proving statements directly in a non--clausal setting, when additional information on the underlying domain is available in form of specific properties and algorithms. We demonstrate on some concrete examples several heuristic techniques for the automation of natural--style proving of statements from elementary analysis. The purpose of this work in progress is to generate proofs similar to those produced by humans, by combining automated reasoning methods with techniques from computer algebra. Our techniques include: the S-decomposition method for formulae with alternating quantifiers, quantifier elimination by cylindrical algebraic decomposition, analysis of terms behavior in zero, bounding the bounds, rewriting of expressions involving absolute value, algebraic manipulations, and identification of equal terms under unknown functions. These techniques are being implemented in the {\em Theorema} system and are able to construct automatically natural--style proofs for numerous examples including: convergence of sequences, limits and continuity of functions, uniform continuity, and other.
Original languageEnglish
Place of PublicationHagenberg, Linz
PublisherRISC, JKU
Number of pages33
Publication statusPublished - Apr 2018

Publication series

NameRISC Report Series
No.18-06

Fields of science

  • 101 Mathematics
  • 101001 Algebra
  • 101005 Computer algebra
  • 101009 Geometry
  • 101012 Combinatorics
  • 101013 Mathematical logic
  • 101020 Technical mathematics

JKU Focus areas

  • Computation in Informatics and Mathematics

Cite this