TY - BOOK
T1 - Experimental Validation of Networked Aerial IoUT Solutions: Testbeds and Measurements
A2 - Muzaffar, Raheeb
A2 - Hummel, Karin Anna
PY - 2023
Y1 - 2023
N2 - An aerial Internet of Unmanned Things (IoUT) is exposed to many practical issues, such as signal propagation in unknown 3D environments, simultaneous heterogeneous network traffic types, and the need to coordinate with aerial vehicles, ground vehicles, and humans. Typically, several wireless channels co-exist to serve aerial control communication that requires low-latency and time guarantees and primarily video transmission that calls for high data rates. Environmental context information is often utilized and exchanged as well, above all location context, which is important for navigation and coordination of unmanned aerial vehicles. While in principle both communication and positioning technologies are available, practical inaccuracies and disturbances are challenging for an aerial IoUT. Thus, the validation of solutions for aerial networked systems strongly requires an experimental approach to discover deficiencies and to ensure practicality. In this chapter, we review the requirements for aerial networking and communications and discuss the capabilities and limitations of major candidate wireless technologies: Wi-Fi, 4G/5G, and LoRaWAN. We present a survey of current testbeds and achieved performance of single and multi-hop links, which is intended to serve as a guide for the setup of an aerial IoUT testbed.
AB - An aerial Internet of Unmanned Things (IoUT) is exposed to many practical issues, such as signal propagation in unknown 3D environments, simultaneous heterogeneous network traffic types, and the need to coordinate with aerial vehicles, ground vehicles, and humans. Typically, several wireless channels co-exist to serve aerial control communication that requires low-latency and time guarantees and primarily video transmission that calls for high data rates. Environmental context information is often utilized and exchanged as well, above all location context, which is important for navigation and coordination of unmanned aerial vehicles. While in principle both communication and positioning technologies are available, practical inaccuracies and disturbances are challenging for an aerial IoUT. Thus, the validation of solutions for aerial networked systems strongly requires an experimental approach to discover deficiencies and to ensure practicality. In this chapter, we review the requirements for aerial networking and communications and discuss the capabilities and limitations of major candidate wireless technologies: Wi-Fi, 4G/5G, and LoRaWAN. We present a survey of current testbeds and achieved performance of single and multi-hop links, which is intended to serve as a guide for the setup of an aerial IoUT testbed.
U2 - 10.1007/978-3-031-33494-8_9
DO - 10.1007/978-3-031-33494-8_9
M3 - Anthology
SN - 978-3-031-33493-1
T3 - Internet of Unmanned Things (IoUT) and Mission-based Networking
BT - Experimental Validation of Networked Aerial IoUT Solutions: Testbeds and Measurements
PB - Springer
ER -