Estimation of the Mean Value Engine Torque using an Extended Kalman Filter

Engelbert Grünbacher, Patrick Kefer, Luigi del Re

Research output: Chapter in Book/Report/Conference proceedingConference proceedingspeer-review

Abstract

Modern ECUs are usually torque orientated. As a consequence, a good estimation of the real mean value output torque of the engine is needed. As torque measurement is mostly too expensive, the ECUs usually include torque estimation algorithms, which, however, are usually quite simple and give a poor estimate of dynamic effects. In this paper we present a simple but effective method to estimate the engine torque based on an extended Kalman filter used in combination with a polynomial engine model and a simple friction model. Using only standard measurements or ECU internal variables, like fuel mass, spark advance for gasoline engines and injection timing for diesel engines, pressure of the intake manifold and speed are enough to get a good estimation value for the mean value torque of the engine. In this paper we also discuss the algorithm of estimating the mean value torque of the engine that is mounted in a vehicle, where usually the load torque is not known. The resulting engine torque is a dynamical torque signal that can be used as base for several control loops that are implemented in the ECU. The method was tested and implemented on a BMW M47D diesel engine mounted on a dynamical test bench.
Original languageEnglish
Title of host publicationSAE world congress 2005
Number of pages10
Publication statusPublished - Apr 2005

Fields of science

  • 202 Electrical Engineering, Electronics, Information Engineering
  • 202027 Mechatronics
  • 202034 Control engineering
  • 203027 Internal combustion engines
  • 206001 Biomedical engineering
  • 206002 Electro-medical engineering
  • 207109 Pollutant emission

Cite this